Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,6-Bis(prop-2-ynyloxy)naphthalene

Li Yao ${ }^{\text {a }}$ and Ruo-Jie Tao ${ }^{\text {b* }}$

${ }^{\text {a }}$ School of Computer and Information Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
Correspondence e-mail: zhw@henu.edu.cn
Received 28 September 2008; accepted 2 October 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.099$; data-to-parameter ratio $=15.2$.

The title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$, crystallizes with one halfmolecule in the asymmetric unit. The molecule lies on an inversion centre, located at the mid-point of the naphthyl group. All non-H atoms are almost coplanar, with a mean deviation from the least-squares plane of 0.0536 (11) \AA. Molecules are linked into a three-dimensional framework by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds.

Related literature

For compound preparation, see: Burchell et al. (2006). For related structures, see: Zhang et al. (2008); Ghosh et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=236.26$
Orthorhombic, Pbca

$$
\begin{aligned}
& a=7.5783(11) \AA \\
& b=8.0295(12) \AA \\
& c=20.972(3) \AA
\end{aligned}
$$

$V=1276.1(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
1250 reflections

$$
\mu=0.08 \mathrm{~mm}^{-1}
$$

$T=293$ (2) K
$0.20 \times 0.19 \times 0.17 \mathrm{~mm}$

6824 measured reflections 1250 independent reflections 952 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

82 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.11 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.10 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 4-\mathrm{C} 7 / \mathrm{C} 7^{\mathrm{i}} / \mathrm{C} 8$ and $\mathrm{C} 4^{i}-\mathrm{C} 7^{\mathrm{i}} / \mathrm{C} 7 / \mathrm{C} 8^{\mathrm{i}}$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.56	3.385 (2)	148
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cg} 1^{\text {ii }}$	0.97	2.76	3.579 (2)	143
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cg} 22^{\text {iii }}$	0.97	2.76	3.579 (2)	143

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2213).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burchell, T. J., Jennings, M. C. \& Puddephatt, R. J. (2006). Inorg. Chim. Acta, 359, 2812-2818.
Ghosh, S., Mukhopadhyay, R., Helliwell, M. \& Mukherjee, A. K. (2007). Acta Cryst. C63, o496-o500.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, W., Yao, L. \& Tao, R.-J. (2008). Acta Cryst. E64, o307.

supplementary materials

2,6-Bis(prop-2-ynyloxy)naphthalene

L. Yao and R.-J. Tao

Comment

The molecule of the title compound (Fig. 1) lies on an inversion center, placed at the midpoint of the naphthyl group. Except for H atoms of the methylenes, all the remaining atoms are almost coplanar, with a mean deviation from the least-square plane to be 0.0675 (11) \AA. The bond lengths and angles are normal.

No classical hydrogen bonds or $\pi-\pi$ interactions are observed. The molecules of the title complex are linked into a three-dimensional framework by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds (Fig. 2, Table 1). [Cg1 and $C g 2$ are the centroids of the $\mathrm{C} 4-\mathrm{C} 7, \mathrm{C} 7^{\mathrm{i}}, \mathrm{C} 8$ and $\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}, \mathrm{C} 7, \mathrm{C} 8^{i}$ rings, respectively. Symmetry code: (i) $-x+2,-y+1,-z$.]

Experimental

The title compound was obtaind unintentionally as the product of an attempted synthesis of a network complex (Burchell et al., 2006) based on $\mathrm{Co}^{\mathrm{II}}$ and 2,6-bis(prop-2-ynyloxy)naphthalene, by evaporation of a methyl alcohol and acetone solution of $\mathrm{CoCl}_{2}, \mathrm{NaN}_{3}$ and the title molecule, at 298 K . All chemical reagents were obtained commercially from Alfa Aesar Company and used without further purification.

Refinement

All the H atoms could be detected in the difference electron density maps. Nevertheless, they were situated into the idealized position and refined using a riding model. $\mathrm{C}-\mathrm{H}=0.97 \AA$ for the methylene groups and $\mathrm{C}-\mathrm{H}=0.93 \AA$ for the remaining H atoms. $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}($ carrier C$)$ for all the H atoms.

Figures

Fig. 1. A view of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbritary radii. 'A' labeled atoms are generated by symmetry code $-x+2,-y+1,-z$.

Fig. 2. The three-dimensional supramolecular framework of the title complound formed by
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ hydrogen bonds.

2,6-Bis(prop-2-ynyloxy)naphthalene

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \quad F_{000}=496$

supplementary materials

$M_{r}=236.26$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=7.5783$ (11) \AA
$b=8.0295$ (12) \AA
$c=20.972(3) \AA$
$V=1276.1(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$
6824 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
1250 reflections
82 parameters
$D_{\mathrm{x}}=1.230 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1948 reflections
$\theta=2.7-26.2^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.20 \times 0.19 \times 0.17 \mathrm{~mm}$

952 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=1.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 25$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0447 P)^{2}+0.1717 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.10$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iss }} *^{*} U_{\text {eq }}$
O1	$0.99206(12)$	$0.82529(11)$	$0.13702(4)$	$0.0551(3)$
C1	$0.9300(3)$	$1.1886(2)$	$0.21293(9)$	$0.0939(7)$
H1	0.9416	1.2665	0.2455	0.113^{*}
C2	$0.9155(2)$	$1.09120(19)$	$0.17226(8)$	$0.0662(5)$
C3	$0.8995(2)$	$0.97311(17)$	$0.12002(7)$	$0.0600(4)$
H3A	0.7762	0.9479	0.1123	0.072^{*}
H3B	0.9492	1.0202	0.0814	0.072^{*}
C4	$1.00020(16)$	$0.70096(16)$	$0.09247(7)$	$0.0473(3)$
C5	$1.09064(17)$	$0.55721(17)$	$0.11300(7)$	$0.0532(4)$
H5	1.1365	0.5528	0.1541	0.064^{*}
C6	$1.11120(18)$	$0.42548(16)$	$0.07337(7)$	$0.0525(4)$
H6	1.1699	0.3313	0.0881	0.063^{*}
C7	$1.04565(15)$	$0.42735(15)$	$0.01009(7)$	$0.0458(3)$
C8	$0.93214(16)$	$0.70846(16)$	$0.03204(6)$	$0.0481(4)$
H8	0.8713	0.8029	0.0187	0.058^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0576(6)$	$0.0521(6)$	$0.0555(6)$	$0.0050(5)$	$-0.0035(5)$	$0.0030(5)$
C1	$0.145(2)$	$0.0720(11)$	$0.0651(12)$	$0.0012(12)$	$0.0035(12)$	$-0.0069(10)$
C2	$0.0822(11)$	$0.0563(9)$	$0.0601(10)$	$0.0052(8)$	$0.0045(8)$	$0.0045(8)$
C3	$0.0666(10)$	$0.0526(8)$	$0.0609(9)$	$0.0060(7)$	$-0.0028(7)$	$0.0032(7)$
C4	$0.0400(7)$	$0.0467(7)$	$0.0553(8)$	$-0.0026(6)$	$0.0014(6)$	$0.0045(6)$
C5	$0.0497(8)$	$0.0572(8)$	$0.0525(8)$	$0.0020(7)$	$-0.0072(6)$	$0.0088(7)$
C6	$0.0476(7)$	$0.0494(7)$	$0.0603(9)$	$0.0081(6)$	$-0.0066(6)$	$0.0109(7)$
C7	$0.0364(6)$	$0.0465(7)$	$0.0546(8)$	$-0.0008(5)$	$-0.0014(6)$	$0.0103(6)$
C8	$0.0424(7)$	$0.0446(7)$	$0.0575(9)$	$0.0042(6)$	$-0.0021(6)$	$0.0095(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 4$	$1.3687(16)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3541(18)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.4240(16)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.162(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.417(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.454(2)$	$\mathrm{C} 7-\mathrm{C} 8^{\mathrm{i}}$	$1.4136(18)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700	$\mathrm{C} 7-\mathrm{C}^{\mathrm{i}}$	$1.421(2)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700	$\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$1.4136(18)$
$\mathrm{C} 4-\mathrm{C} 8$	$1.3695(19)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.4098(18)$		
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 3$	$117.34(10)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.54(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	180.0	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.25(18)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$108.28(12)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.74(12)$

supplementary materials

$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.0
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.4
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 8$	$125.63(12)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$114.25(12)$
$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5$	$120.11(13)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$-176.80(12)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 8$	$2.36(19)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$-178.77(11)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.91(12)$
$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.02(19)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$122.38(12)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$120.34(15)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$117.28(16)$
$\mathrm{C} 4-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$119.98(12)$
$\mathrm{C} 4-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.9(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8^{\mathrm{i}}$	$179.27(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$-1.0(2)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$178.05(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$-0.75(19)$

Symmetry codes: (i) $-x+2,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.56	$3.385(2)$	148
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.97	2.76	$3.579(2)$	143
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.97	2.76	$3.579(2)$	143

Symmetry codes: (ii) $-x+2, y+1 / 2,-z+1 / 2$; (iii) $-x+1 / 2, y-1 / 2, z$; (iv) $x-1 / 2,-y+3 / 2,-z$.

supplementary materials

Fig. 1

Fig. 2

